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Abstract

Recent research in computational cognitive neuroscience has found that sen-
tence embeddings of image captions can predict visual cortical responses to cor-
responding natural scenes. The study presented here expands upon this finding
of cross-modal representational alignment by investigating how manipulating cap-
tions affects their neural predictivity of the brain’s visual system. The primary
manipulation of interest is semantic underspecification – in which disambiguat-
ing information is removed. For example, in comparison to the sentence ”Alice
threw a ball”, the modified form ”They threw a ball” is underspecified because
the identity of the subject is unclear. In addition to this semantic intervention,
this study also compared the effects of syntactic manipulations, such as scram-
bling word sequence. This study investigated how these manipulations affected
sentence embeddings’ alignment with fMRI brain data obtained from the Nat-
ural Scenes Dataset. Prior work has demonstrated that syntactic and semantic
manipulations reduce neural alignment with brain regions involved in linguistic
processing (Oota et al., 2024). This investigation examined how that alignment is
affected cross-modally – to what extent can encoding models trained on manip-
ulated caption embeddings predict the visual system’s responses to the captions’
corresponding images? Consistent with prior findings (Kauf et al., 2024), our find-
ings revealed that syntactic manipulations, in the form of word scrambling, had a
negligible effect on neural predictivity. On the other hand, semantic manipulations
indeed resulted in a reduction in neural predictivity of the brain’s vision network,
suggesting that the representations learned by the sentence transformer model are
more sensitive to semantic, rather than syntactic, information modifications.

1 Introduction
To construct rich semantic representations of natural scenes requires not only object
recognition, but also a mechanism for encoding the relations between objects. Given
that these interrelations can be explicitly articulated via language (in the form of image
captions), this research aimed to investigate the representational alignment between
sentence embeddings and neural activations of the brain’s visual cortex in response
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to the presentation of the captions’ corresponding images. A recent study by Doerig
et al. (2022) investigated the alignment between the representational spaces of language
models and the visual cortex, building upon a breadth of research in cognitive compu-
tational neuroscience which implements representational similarity metrics to compare
high-dimensional vectors derived from both brain recordings and ANNs (Kriegeskorte,
2015). In addition to these RSA-based approaches, encoding models to predict fMRI
brain activity have become an increasingly frequent methodological technique in recent
years, particularly as a tool for evaluating representational alignment.

The present study applied encoding models to investigate if caption manipulations
affect their predictivity of neural activations in the brain’s visual system in response to
presentation of the captions’ corresponding images. Enumerated below are the manip-
ulations of interest:

1. scrambling

2. Subject Phrase (SP) underspecification

3. Verb Phrase (VP) underspecification

4. content word removal

By implementing manipulations (2) and (3), this research reveals the degree to which
reducing image captions’ referential specificity (how precisely informative a descrip-
tion is) perturbs LLM embeddings’ alignment with visuo-semantic representations in
the brain. Specifically, the subject/object caption manipulations reveal the role of refer-
ential specificity in semantic encodings. In comparison, the scrambling manipulations
reveal the contribution of syntactic structure, consistently with previous findings from
Kauf et al. (2024). Manipulation (4) involves the removal of all words belonging to
a particular part-of-speech (POS) category (nouns/verbs). Recent work has explored
how semantic underspecification affects the semantic embeddings generated by trans-
former models (Pezzelle, 2023). Investigating whether the cortical representation of
a scene can be mapped from LLM embeddings (generated from underspecified image
captions) provides an empirical assessment of the cross-modal representational align-
ment between language models and the brain. Regions of interest (ROIs) for the present
study include the early visual cortex (V1-V4) and higher-level functional regions in-
volved in scene and body recognition.

Prior work has demonstrated that syntactic manipulations of captions, such as
scrambling, affect embeddings’ representational alignment with neural activations in
the brain’s language network (Oota et al., 2024). Furthermore, recent research sug-
gests that semantic content, more than syntactic structure, contributes to embeddings’
representational alignment (Kauf et al., 2024). This evidence suggests that it is pri-
marily object and action entities that encode the semantics of scenes. Meanwhile,
function words, such as determiners, conjunctions, and prepositions, while necessary
for grammaticality, do not convey semantic information. This work examines the effect
of semantic manipulations on caption embeddings’ predictivity of neural responses to
corresponding visual scenes. Among these semantic manipulations are the comparison
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between subject/object underspecification and noun ablation. We predicted that, con-
sistently with the findings of (Kauf et al., 2024), semantic manipulations should have a
more substantial effect on representational alignment than syntactic manipulations.

2 Background
Recently, neurolinguistics research has found that the human language network – a
set of brain regions that are selectively and robustly activated during language pro-
cessing (Fedorenko et al., 2011) – exhibits similar levels of activation in both word-
order-manipulated and intact sentences (Kauf et al., 2024). It should be noted that the
word-order manipulations in Kauf et al. (2024) preserve pointwise mutual informa-
tion (an information theoretic metric that quantifies the degree to which words predict
one another). In other words, information about local syntactic dependencies was con-
served (Mollica et al., 2020). It has been argued that humans’ insensitivity to these
local manipulations of word order – as observed in psycholinguistic studies measuring
subject’s comprehension of scrambled texts – can be explained in terms of computa-
tional efficiency – given finite cognitive capacity, extracting the relevant meaning from
a sentence should not be dependent upon the exact word sequence (Hahn et al., 2022).

Representations generated by language models, particularly transformer architec-
tures (Devlin, 2018), can predict neural responses in the language network via regression-
based encoding models (Caucheteux & King, 2022; Hosseini et al., 2022). It has been
suggested that this correspondence stems from the convergence of the ANNs’ linguis-
tic representations with those in the brain, despite key differences in their architecture
and learning mechanisms (Caucheteux & King, 2022). Prior research has shown that
sentence embeddings generated from LLMs exhibit a significant degree of represen-
tational alignment with neural activations in the brain’s temporal and inferior gyrus,
regions implicated in language processing (Oota et al., 2024). Unlike one-hot encod-
ing models, which merely capture whether each lexical item is present in a given sen-
tence, sentence transformers generate contextualized sentence-level vector representa-
tions. These sentence transformer models are fine-tuned with the objective function
of pairwise sentiment analysis, maximizing the cosine similarity for similar sentence
pairs (labeled 0) and minimizing the cosine similarity for dissimilar sentence pairs (la-
beled 2) (Reimers & Gurevych, 2019). The contextualized embeddings encoded by
transformers are an instantiation of the distributional hypothesis (Abrusán et al., 2018).
Distributional semantics is based on the distributional hypothesis, which states that
similarity in meaning results in similarity of linguistic distribution: words that are se-
mantically related, are used in similar contexts (Harris, 1954). Distributional semantics
approximates linguistic meaning with vectors summarizing the contexts where expres-
sions occur (Baroni et al., 2012). Furthermore, research in distributional semantics
suggests that distributional patterns can capture the meanings of content, but not func-
tion, words (Baroni et al., 2012; Abrusán et al., 2018; Boleda, 2020).

Recent work by Oota et al. (2024) provides evidence for the role of syntactic infor-
mation in the alignment between the brain’s language network and embeddings gen-
erated by LLMs. Oota et al. (2024) used a direct approach to eliminate information
related to specific linguistic properties in BERT representations and observed how this
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affected alignment with fMRI brain recordings. The study examined a range of linguis-
tic properties including sentence length, syntactic properties (such as tree depth), and
semantic features (such as number of subjects and objects). Oota et al. (2024) found
that eliminating each linguistic property reduced brain alignment across all layers of
BERT. This present work expands upon their findings of language models’ alignment
with the brain’s language network by investigating the correspondence between lan-
guage model embeddings and visual information processing in the brain.

Prior work by Pezzelle (2023) demonstrates that caption embeddings generated
by the multimodal transformer model CLIP are highly sensitive to underspecification
manipulations, finding that CLIP assigns much lower scores to underspecified descrip-
tions compared to more detailed ones. Specifically, the study investigated the effects
of quantity, gender, location, and object underspecification. Similarly, this present
research takes inspiration from Pezzelle (2023) to implement an array of linguistic ma-
nipulations. Allen et al. (2022) collected a large-scale fMRI dataset for brain encoding.
In that study, subjects viewed images of natural scenes from the MS COCO dataset -
a dataset of richly annotated images (Lin et al., 2014). This dataset, called the Natural
Scenes Dataset (NSD) was previously used by Doerig et al. (2022) in the training of
brain encoding models. In the present study, we build upon the prior finding of Doerig
et al. (2022) that caption embeddings are aligned with neural activations in the vi-
sual cortex, investigating the effects on encoding accuracies for ROIs ranging from the
early visual cortex to high-level functional regions involved in place recognition. An
additional key finding from the study by Doerig et al. (2022) was that representational
alignment was not restricted to high-level areas, but to early visual areas as well, sug-
gesting that sentence embeddings have a degree of representational similarity to purely
visual encodings of scenes, in addition to multi-modal visuo-semantic encodings.

This current work is also motivated by a recent study by Kauf et al. (2024), which
invested the contribution of lexical-semantic content vs. syntactic structure to the sim-
ilarity between artificial neural network (ANN) language models and human brain
responses in the language network. Kauf et al. (2024) used fMRI data from partic-
ipants reading sentences, along with representations from GPT-2 language models.
Kauf et al. (2024). also applied various manipulations to the original sentences, in-
cluding word order changes, information loss, and semantic distance alterations. They
found that lexical-semantic content, rather than syntactic structure, is the main driver
of ANN-brain similarity in language processing. Word order manipulations had min-
imal impact on ANN-brain similarity, suggesting that syntax plays a secondary role
compared to lexical semantics. Information loss manipulations showed that content
words (nouns, verbs, adjectives) contribute more to ANN-brain similarity than function
words. Semantic distance manipulations revealed that sentences with similar meanings
to the originals maintained high ANN-brain similarity. Their findings challenge some
traditional views in linguistics that emphasize the importance of syntax in language
processing. Their results suggest that ANN language models like GPT-2 may capture
aspects of human language processing primarily through lexical-semantic representa-
tions rather than syntactic ones.

Building upon the prior work of Doerig et al. (2022), the current study contributes
to our understanding of how semantics is encoded in the brain by evaluating how repre-
sentational alignment is affected by various linguistic manipulations, highlighting the
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contribution of lexical semantic content. This work extends the prior work of Doerig
et al. (2022) by assessing cross-modal representational alignment — caption embed-
dings were used to train encoding models to predict visual cortical responses to the
captions’ corresponding images. This project expands upon prior work in the Neuro-
AI research domain that specifically investigates the alignment between representa-
tions in the brain and those learned by LLMs (Schrimpf et al., 2021; Kauf et al., 2024).
Furthermore, this study builds on prior research using LLMs to provide insight into the
computational mechanisms underlying semantic encoding (Toneva et al., 2022; Baroni,
2020).

3 Methods

3.1 Language Model
Unlike one-hot encoding models, which are limited by the curse of dimensionality
and fail to capture similar sentiments between sentences, deep neural network-based
language models exploit distributed encoding in order to construct language represen-
tations as sets of multiple semantic features. The transformer architecture (Vaswani,
2017) is the current state of the art for natural language processing. Sentence trans-
formers process the whole input sequence (sentence) in parallel. Sentence-level em-
beddings are generated by calculatig an aggregate measure of all word embeddings
through max-pooling (Reimers & Gurevych, 2019). These vector representations gen-
erated by the sentence transformer model SBERT used in the present study consist of
768 dimensions. The representational space learned by sentence transformers reflects
the semantic relationship between embeddings – the cosine distance between embed-
dings of sentences that have a close semantic proximity is minimized.

MS-COCO captions were encoded using the sentence transformer model SBERT to
generate sentence-level embeddings. To derive a fixed-sized sentence-level embedding
SBERT adds a pooling operation to the output of BERT / RoBERTa. This pooling
strategy computes the mean of all output vectors (MEANstrategy). In order to fine-tune
BERT / RoBERTa, Reimers & Gurevych (2019) create siamese networks to update the
weights such that the produced sentence embeddings are semantically meaningful and
can be compared with cosine-similarity. This fine-tuning was performed using a mean
squared-error (MSE) loss objective function, whereby the cosine similarity between
the two sentence embeddings u and v is computed.

3.2 Data
To investigate the representational alignment of LLM embeddings of underspecified
image captions, regression-based voxel-wise encoding models could be implemented
to assess LLM embeddings’ predictivity of cortical activation. The publicly available
Natural Scenes Dataset provides fMRI data of 8 subjects viewing scenes from the MS
COCO dataset (Allen et al., 2022). This methodology would enable evaluation of
the cognitive plausibility of the representations learned by LLMs, specifically whether
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abstract multi-modal semantic encodings in the brain’s visuo-semantic network can be
mapped from an underspecified form.

Caption embeddings will be mapped to voxelwise activations via a brain encod-
ing model to evaluate representational alignment with neural activations in the visuo-
semantic network. The mapping between the sentence embedding and each voxel will
be learned via a ridge regression and used to predict brain responses to images in the
test set (set of 1000 common images between all 8 subjects). The dimensions of this
ridge regression correspond to the embedding space dimensions (768) plus one dimen-
sion corresponding to the brain response. The accuracy of the regression in one voxel
implies that the neural activity in this voxel is correlated to the projection of the caption
onto a vector in the embedding space (Arana et al., 2023). Fractional ridge regression
(Rokem & Kay, 2020) was implemented. Regularisation methods such as this prevent
overfitting by penalising the regression for large parameters (Tikhonov, 1963). This
biases the regression towards sparse sets of parameters (sets with a low number of non-
zero parameters), which are less prone to overfitting (Arana et al., 2023). In the present
work, fMRI encoding models were trained using fractional ridge regression on stimuli
representations from the Natural Scenes dataset.

Some brain regions specialize in the interpretation of visual inputs while others are
more responsive to linguistic stimuli. We hypothesized that regions more proximal to
the anterior temporal lobe, such as those involved in high-level visual processing tasks
including object and scene recognition, would exhibit a higher degree of cross-modal
representational alignment with sentence embeddings. The primary goal of each ridge
regression-based encoding model is to predict fMRI voxel values, with expected levels
of high correlation in late layers of the brain’s vision network, in response to visual
stimuli (images of natural scenes). A separate encoding model will be trained per
subject (N=8). To train and test the performance of each encoding model, the fMRI
data corresponding to the images unique to each subject will be used for training, and
evaluation will be performed using the remaining fMRI data corresponding to the set
of 1000 images observed by all participants. The semantic scene descriptions used to
train the encoding models will be generated by SBERT.

3.3 Representational Alignment
The empirical evidence that alignment between artificial and biological neural net-
works improves generalization and transfer learning helps to justify representational
alignment as a useful evaluation metric for LLMs (Sucholutsky et al., 2023). Rep-
resentational alignment is the degree of correspondence between the representations
learned by two information processing systems, which may be either biological or ar-
tificial (Sucholutsky et al., 2023). The degree of alignment between the brain and an
ANN model is typically determined by comparing brain activity to the embeddings
generated by the ANN model. This comparison is predicated upon the assumption
that, if the brain is using the same semantic encoding mechanism as the model, then
one should be able to map the embeddings to brain activity. While representational
alignment is a widely used evaluation metric in cognitive science and neuro-AI (Su-
cholutsky et al., 2023), cross-modal representational alignment remains underexplored.
Doerig et al. (2022) performed the first significant investigation of cross-modal align-
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ment, using representational similarity analysis. This metric measures the similarity
between two sets of numerical vectors, for example, language embeddings and voxel-
wise activations in the brain. This similarity metric can be calculated by taking the
pairwise (cosine) distances between vectors and calculating the Pearson’s correlation
between these distances. In this study, we assume that this mapping can instead be
approximated via a ridge regression-based brain encoding model.

LLMs’ “representational alignment” with the human brain can be defined by a
brain encoding model’s accuracy in predicting neural activation from LLM embeddings
(Oota et al., 2024). Representational alignment is operationalised in this paper using
brain encoding models. Given the SBERT representations rl of the MS-COCO caption
embeddings i and rv as the corresponding images represented in the brain’s vision
network, we calculate the Pearson’s correlation between the actual and predicted voxel-
wise activations. compute the pairwise cosine similarity between the representations.
As such, this measures the degree of cross-modal alignment (RAlv) between image
representations rv and SBERT embeddings rl. Ultimately, this approach facilitates a
precise investigation into the representational code underlying the semantics of image
processing.

3.4 Manipulations
3.4.1 Word Order Manipulations

Word order, as determined by a language’s syntax rules, is an important cue used in
language processing to understand the relations between words (Bever, 1970). How-
ever, psycholinguistics research has demonstrated has that language comprehension is
highly robust to errors in linguistic input, such as word order errors, provided that a
plausible meaning can be recovered. For example, in the case of the sentence The
woman gave the ball the girl, people generally infer The woman gave the girl the ball
to be the more plausible intended meaning. Therefore, syntactic information such as
word order can be overriden in favor of a more plausible meaning (Levy et al., 2009).
The syntactic manipulation investigated in the present study was implemented via a
pairwise scrambling, whereby the positions of adjacent words were swapped. Addi-
tionally, a global scrambling manipulation – whereby all word positions are randomly
shuffled – was also implemented.

3.4.2 Semantic Manipulations

The second class of manipulations targets the information conveyed in the subject and
verb phrases of sentences. More specifically, we investigated the impact of underspec-
ification, whereby the referential informativity of the caption is reduced by replacing
either the subject or verb phrase with the underspecified forms ”they” and ”is doing
something” respectively. To do this, we defined all words preceding the first verb oc-
currence in each caption as the Subject Phrase, and all succeeding words as the Verb
Phrase. This was perfomed used the part-of-speech tagger (pos-tagger) in the NLTK
library. The words in either the Subject or Verb Phrase were ablated from the caption
and replaced with either of the underspecified forms ”they” or ”is doing something”.
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Note that these manipulations do not preserve Subject-Verb agreement. In cases of
an original singular subject, the modified form ”they” is inconsistent with a singular
verb. Likewise, in cases of a plural subject, the modified form ”is doing something” is
inconsistent with a plural verb. However, given the high degree of similarity (as mea-
sured via cosine similarity) between sentence embeddings for the grammatical ”They
are doing something” and the ungrammatical form ”They is doing something”, it was
observed that subject-verb agreement has a negligible impact on the vector represen-
tations generated by language models to encode sentence meanings. Therefore, the
method for implementing these manipulations, as described above, set aside consider-
ations of Subject-Verb agreement when modifying the input captions.

Table 1: Caption Manipulations

MANIPULATION EXAMPLE

Original a woman is throwing a ball
Pairwise Scrambled woman a throwing is ball a
Global Scrambled is a throwing woman ball a
Underspecified Subject Phrase they is throwing a ball
Underspecified Verb Phrase a woman is doing something

4 Results
In this section, we investigate what linguistic features (word order, referential speci-
ficity, semantic content, word count) contribute to representational alignment of regression-
trained ANN-to-brain mapping models. More specifically, we trained brain encoding
models on sentence embeddings of manipulated captions (with corresponding brain re-
sponses to matching images) and tested these models using held-out brain responses,
corresponding to the shared images viewed by all 8 subjects. The brain predictivity
scores are raw Pearson r values, rather than r values normalized by the noise ceiling.

We first investigated brain encoding performance on a control condition: mappings
were between an unsorted (randomly permuted) list of captions and the ordered set of
brain responses. As such, captions were not matched to the brain response to the corre-
sponding image but were instead mapped to the response from another random image.
As expected, the encoding models performed at near-chance level for this condition.
Then we evaluated the effect of our two types of caption manipulations – manipulations
of word order within the caption (word-order manipulations) and semantic underspeci-
fication (subject phrase & verb phrase) – on brain encoding models’ capacity to predict
neural responses, in comparison to performance with the original captions.

8



Figure 1: Comparison of neural predictivity across manipulation conditions. Included
are individual data points denoting the encoding accuracy (Pearson’s r) for each subject
(n=8), with standard error bars. Note that the scrambled condition displayed here de-
notes the global scrambling condition. Consistent with the methodology implemented
in Kauf et al. (2024), pairwise dependent-samples t-tests with Bonferroni correction
procedure were performed to confirm statistical significance (p <.05) for SP, VP un-
derspecified, and noun removal conditions. Dotted red line indicates average encoding
accuracy across all ROIs for baseline (randomly matched NSD image-MS-COCO cap-
tion pairs) condition.
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Figure 2: Barplots comparing neural predictivity across high-level visual ROIs for each
manipulation condition.
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4.1 Syntactic Manipulation
Word-order manipulations had negligible effect on brain predictivity in the visual cor-
tex. This diverges from the observations of Kauf et al. (2024), which found that word-
order manipulations had a small, yet statistically significant, impact on neural predic-
tivity in the brain’s language network. These varied findings could be explained by
the different brain regions of interest in each study. While neural predictivity in the
brain’s language network may indeed be sensitive to word-order manipulations, based
on the present findings, representational alignment with the brain’s vision network may
be unaffected by syntactic manipulations. These findings are therefore indicative of
modality-specific distinctions in representational alignment, expanding upon the prior
work of Doerig et al. (2022).

In addition to the pairwise scrambling manipulation described previously, the more
severe global scrambling manipulation – whereby the positions of all words in the
sentence are randomly shuffled – did not significantly affect neural predictivity. As
observed in Fig.1, this manipulation still yielded an average Pearson’s correlation of
0.30 across all voxels. It should be noted that this more extreme scrambling manipula-
tion does not take into account point-wise mutual information (PMI) – an information-
theoretic measure, defined by Mollica et al. (2020), quantifying local semantic depen-
dency structure. The random shuffling manipulation implemented here is not designed
to preserve this measure. Yet, even for this more severe disruption, the effect on brain
predictivity was not significant. This finding is consistent with the prior observations
of Kauf et al. (2024), which found that syntactic perturbations of language embeddings
have a limited effect on neural predictivity.

4.2 Semantic Manipulation
Each of the semantic underspecification manipulations (Subject Phrase & Verb Phrase)
led to a significant reduction in encoding accuracy relative to the Original condition.
However, given the extent to which referential informativity is reduced in each of these
manipulations, the finding that neural data can still be reliably mapped (with avg. Pear-
son’s correlation of 0.28 for all voxels across both underspecification condiitons) from
these underspecified captions is still somewhat surprising, especially since each manip-
ulation results in information loss in the form of word removal from either the subject
or verb phrase. One explanation for this limited reduction in encoding accuracy may
be that these manipulations largely preserve content words.

Greater encoding accuracy was achieved in high-level functional regions involved
in body and scene recognition. However, the overall pattern of results remained con-
sistent with the results for early visual ROIS, whereby the semantic manipulations still
yielded reductions in neural predictivity. As observed in the above Figures depict-
ing encoding accuracy, semantic underspecification yields an average 9% reduction in
neural predictivity across all voxels. To evaluate the validity of this speculative expla-
nation, an additional manipulation was implemented, whereby all nouns were ablated
from each caption (this condition is depicted in purple in above Figures 1 and 2). In-
deed, this noun-ablation manipulation led to a more substantial decrease in predictivity
values. Complete noun ablation resulted in an average 16% reduction in encoding
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Figure 3: Effect of word removal on average neural predictivity across all voxels. As
can be observed in the differences in line plots for the random and targeted information-
loss manipulations (noun ablation, SP/VP underspecification), it is not the general re-
moval of any words, but the specific ablation of content words that strongly reduce
encoding accuracy. Individual data point at n=3 corresponds to SP underspecification
condition, data point at n=3.5 corresponds to noun ablation condition, n=4 corresponds
to VP underspecification condition. Note that, of these manipulations, noun ablation
yields the strongest reduction in a similarly strong reduction in encoding accuracy is
only observed in the random removal of 7 words.

12



accuracy across ROIs.
To ensure that the drop in predictivity for each of these semantic manipulations

was not merely an artifact of the length of the caption, we also implemented additional
information-loss manipulations whereby we ablated a progressively increasing number
of words from the captions (n=4, 5, 6, 7, 8). As can be observed in Figure 3, the
semantic underspecification and noun ablation manipulations had a more substantial
effect on encoding accuracy than the random word-removal manipulations for n=4, 5,
6, even though these targeted information-loss manipulations on average only removed
around 3 words from each caption. This comparison demonstrates that it is not merely
the general loss of words, but rather the specific loss of content words (ex: nouns, verbs)
that affect neural predictivity. The limited effect of word removal on brain predictivity
suggesting an asymmetry in the distribution of content vs. function words present in
the relatively short captions (average num. of words = 11) of the MS-COCO dataset.

5 Discussion

5.1 Contributions of Lexical-Semantic Content vs. Syntactic Struc-
ture to Representational Alignment

To evaluate the cognitive plausibility of LLMs, this research evaluated whether brain
encoding models trained on underspecified embeddings can predict activity in seman-
tic association networks in the brain. Investigating whether the intended meaning (op-
erationalized here as neural activation of late-layer semantic association networks in
the brain recorded as human subjects viewed corresponding images from the Natural
Scenes Dataset) of an underspecified descriptive text can be mapped from the em-
beddings generated by LLMs has provided an empirical assessment of whether the
representations learned by LLMs replicate neural semantic representations’ invariance
to underspecification. Human interpreters are capable of correctly inferring the in-
tended referent from an underspecified utterance Frisson (2009). This suggests that
activation of abstract multi-modal semantic encodings in the brain’s high-level visuo-
semantic network is not affected by superficial manipulations of the specificity of a
subject/object description, and may explain why underspecification has a smaller ef-
fect on encoding accuracy in comparison to stronger information-loss manipulations,
such as noun ablation.

Recent studies in computational neuroscience have found that representations from
transformer models align well with brain responses of humans processing linguistic
input (Caucheteux & King, 2022; Schrimpf et al., 2021). However, precisely what fea-
tures make language model embeddings align with the brain’s semantic representations
has been underexplored (Oota et al., 2024; Kauf et al., 2024), and research investigating
cross-modal alignment with visual responses to images is even more limited (Doerig
et al., 2022). Focusing on the SBERT model from the sentence transformers library,
we investigated the effect of a diverse array of linguistic manipulations, including ma-
nipulations that affect sentence meaning (via underspecification or removal of content
words) and those that primarily affect syntactic structure (carried by word order), on the
neural predictivity of brain encoding models. Ultimately, we found that the removal of
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Figure 4: T-SNE Visualisation of SBERT Embedding Space. Plotted above are the
embeddings for 100 randomly selected original MS-COCO captions, and their variants
(scrambled, SP underspecified, VP underspecified, noun ablation). If the sets of em-
beddings were clustered into different manipulation groups, this would indicate that
the SBERT embeddings were strongly affected by the manipulations. However, the
close proximity of embeddings across manipulation groups observed here indicates
that SBERT vector representations are largely unaffected by these manipulations. This
would suggest that these vector representations are robust to perturbations of word or-
der and referential specificity, and, as depicted in this visualisation, even the ablation
of nouns. This observation is surprising – while the semantic content of captions is in-
deed preserved in the scrambled captions, it is conserved to progressively lesser extents
in the SP/VP underspecification and noun ablation manipulations. Therefore, it was
expected that the noun-ablated vector representations would be positioned at greater
distances from the original (blue) vector representations. Indeed, preliminary analysis
of the cosine similarity between the original and noun-ablated sets of MS-COCO cap-
tion embeddings validates this. Yet, this does not appear to be the case in the above
visualisation. However, given that this dimensionality reduction technique flattens a
768-dimensional space into a 2-dimensional space, the distance between these clusters
may be misleading (Wattenberg et al., 2016)
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lexical-semantic content has a stronger reduction effect on representational alignment
than perturbations of syntactic structure (implemented via word-order scrambling).

Comparatively subtle manipulations (ex: pairwise scrambling) had negligible im-
pact on brain encoding accuracy. This finding has two possible explanations: either
the embedding of the modified caption is very similar to that of the original versions,
or neural activity in the visual cortex is not sensitive to these syntactic manipulations.
Across semantic manipulations, encoding accuracy decreased the more information
was removed, with embeddings of noun-ablated captions achieving an average reduc-
tion of neural predictity of 16% across ROIs.

Information-loss manipulations, rather than word-order manipulations elicit lower
brain predictivity, suggesting that the ANN-to-brain encoding model performance is
less sensitive to syntactic information, but rather relies on semantic information. These
findings are consistent with evidence from neuroscience and computational linguis-
tics. Past work in computational neuroscience points to the greater contribution of
semantics, in comparison to syntax, to both the magnitude and distributed patterns of
activation in the brain’s language network as measured by fMRI (Fedorenko et al.,
2016; Huth et al., 2016; Kauf et al., 2024). Meanwhile, research in NLP demonstrates
that language models are not dependent upon syntactic information to achieve high
performance on many current NLP benchmark tasks (Sinha et al., 2021).

In this study, we integrated neuroscientific and computational linguistics perspec-
tives on the contribution of lexical-semantic content vs. syntactic information in repre-
sentational alignment between sentence embeddings and neural responses in the brain.
The word order manipulations implemented here were inspired by earlier work from
Kauf et al. (2024) comparing the neural predictivity between naturalistic and scram-
bled inputs. Consistent with prior findings from Kauf et al. (2024) we observed that
even completely randomized shuffling of word order, which disrupts local syntactic de-
pendencies, leads only to a negligible decrease in brain encoding model performance.
Further, we found that random word removal does little to decrease brain predictivity;
instead, it is the targeted ablation of content words (such as verbs, nouns) that reduces
representational alignment.

One possible explanation for these findings may be that syntactic information is
not a strong contributor to neural representations in the visual cortex, though it may
be a more influential component of semantic representations in the language network
(Oota et al., 2024). This invariance of ANN-to-brain mapping models to these syntactic
manipulations of the original captions might be explained by the vision network’s com-
parative insensitivity to structure manipulations. While the language system is indeed
sensitive to syntactic processing difficulty (Shain et al., 2024), the vision network may
exhibit less sensitivity to sequential variations. The results presented here suggest that
syntactic structure is not critical for cross-modal representational alignment between
sentence embeddings and fMRI BOLD responses in the brain’s visual cortex.

To further investigate whether the visual network indeed is sensitive to structural
effects, alternative image-caption pairs could be used, such as the Winoground dataset
(Thrush et al., 2022). In this dataset, caption structure is critical to interpretation, as in
cases where the content (words) are held constant, but the word order is varied, yielding
to distinct meanings, each corresponding to a different image (ex: a tree smashed into
a car vs. a car smashed into a tree). However, this would also require additional data

15



collection, as there is currently no publicly available fMRI dataset for human subject
responses to the Winoground image-caption pairs.

Since each manipulation affected representational alignment to varying degrees,
we investigated possible explanations for these differences. Caption manipulations that
led to lower brain encoding accuracy also led to more divergent representations in the
SBERT embedding space (relative to the representations of intact sentences). As dis-
cussed above, we quantified the changes in the representational space across manipu-
lation conditions relative to the intact (original) embeddings using the cosine similarity
metric and observed that manipulations that resulted in a larger transformation of the
embedding space (as determined by a lower cosine similarity), such as SP and VP un-
derspecification, also yielded larger reductions in brain encoding accuracy. However,
even the most severe manipulations (noun ablation) resulted in sentence embeddings
that were still largely similar to the embeddings of the intact captions, and could still be
mapped to human neural responses. One explanation for this finding may be that this
information-loss manipulation is still too limited, and that the remaining verbs, adjec-
tives and adverbs contained in the caption preserve substantial semantic information.
A complete ablation of all content words should yield findings similar to those of Kauf
et al. (2024), whereby representational alignment is substantially reduced.

To summarize, this study enabled us to identify features of linguistic stimuli (ref-
erential informativity, content words) that contribute to cross-modal representational
alignment. These features affect the magnitude of brain encoding models’ predictive
accuracy. However, the strength of this effect was smaller than anticipated – when
these features were manipulated such that we would not expect the resulting captions
to carry much informative structure (as in the noun ablation manipulation), brain en-
coding models were still able to consistently predict neural activity in the visual cortex.

6 Conclusion
In this work, we investigated how manipulating sentence embeddings of image captions
affects their representational alignment with neural responses (as measured with fMRI)
during the viewing of natural scenes. To conduct this exploration, we evaluated which
linguistic features (across two primary manipulation categories) reliably contribute to
brain encoding model predictive accuracy. Consistent with prior work from Doerig
et al. (2022), we found that the neural representation encoding the semantics of images
aligns with the context-dependent word vectors generated by language models. We ad-
ditionally found that the encoding accuracy of brain encoding models is significantly
affected by manipulations of lexical-semantic content, rather than word order manip-
ulations. Specifically, our underspecification manipulations reduced representational
alignment to a greater extent than scrambling manipulations, though neural responses
could still be reliably mapped (with a Pearson’s correlation of 0.28 across all voxels).
As expected, a more severe information-loss manipulation, involving the targeted re-
moval of noun entities, resulted in a stronger reduction in representational alignment.
These findings show that semantic, rather than syntactic, content contributes to repre-
sentational alignment with the brain’s visual cortex. This pattern of results suggests
that the lexical-semantic content of an image caption is encoded in the brain’s visual
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cortex, particularly the high-level visual processing regions involved in scene recogni-
tion.

7 Limitations
As noted in previous sections, MS-COCO captions are rather short, averaging only 11
words. One implication of this brevity is that each caption contains a comparatively
high proportion of function words, which merely signal grammatical relationships be-
tween words, and do not themselves convey semantic content. This may explain why
the random word removal manipulation had a relatively small impact – it was likely that
the removed words were function, rather than content, words. Therefore, little semantic
information was lost in these manipulations. This explanation could also be applied to
the semantic underspecification manipulations as well. While both underspecification
manipulations each resulted in information loss via word removal (SP = avg. 3 words
removed, VP = avg. 4 words removed), some of the words removed in the subject or
verb phrases may have also been function words, such as determiners like ’a’ or the’,
auxiliaries like ’do’ or ’can’, and demonstratives like ’this’ or ’that’. In comparison,
the more severe noun-removal manipulation (avg. 3.5 words removed), guaranteed that
only content words (nouns) would be removed. This explains the greater reduction in
representational alignment for the noun-removal manipulation, and indicates that it is
specifically content words that contribute to representational alignment. These findings
are consistent with the results of Kauf et al. (2024).

Perhaps the manipulations implemented here would have been more impactful on
an alternative dataset, containing longer, complex sentences. Complex sentences, de-
fined by the presence of dependent clauses, will contain a higher number of content
words in the forms of additional nouns and verbs. While most existing crowd-sourced
caption datasets, generated by human annotators, are characterized by this feature of
low length, the introduction of multimodal models presents an opportunity for model-
generated image captions. This would allow us to use the same set of images from the
Natural Scenes Dataset, while generating lengthier captions.

An additional limitation with this study is one common to the cognitive compu-
tational neuroscience research programme, the issue of multiple realisability – similar
representations do not imply similar mechanisms for realising those representations. In
other words, representational alignment between language models and the brain does
not imply that the mechanisms which generated these vector and neural representations
are shared (Guest & Martin, 2023). Therefore, while the findings of this study enable
us to learn what features (syntax, referential specificity, semantic content, word count,
etc.) may contribute to ANN-to-brain mapping, further work is needed to elucidate the
computational mechanisms implemented in the brain which construct these semantic
representations.
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